Quickstart ========== This quickstart guide will help you get up and running with dominosee for analyzing interconnected hydroclimatic extreme events. Basic Usage ---------- First, import the necessary packages: .. code-block:: python import numpy as np import xarray as xr import matplotlib.pyplot as plt import dominosee as ds Event Analysis ------------- One of the core functionalities of dominosee is selecting and analyzing event periods: .. code-block:: python # Create sample event data events = np.random.randn(100, 10) # 100 time steps, 10 events duration = np.arange(1, 11) # Duration of each event # Select the first few days of events based on duration first_period = ds.select_first_period(events, duration, days=5) # Plot the results plt.figure(figsize=(10, 6)) plt.plot(first_period) plt.title('First 5 Days of Events') plt.xlabel('Time Step') plt.ylabel('Value') plt.grid(True) plt.show() Working with xarray DataArrays ----------------------------- For multidimensional gridded climate data, dominosee provides xarray-compatible functions: .. code-block:: python # Create a sample xarray DataArray times = pd.date_range('2025-01-01', periods=100) events = np.random.randn(100, 5, 3) # time, event, location da = xr.DataArray( events, dims=('time', 'event', 'location'), coords={ 'time': times, 'event': np.arange(5), 'location': ['A', 'B', 'C'] } ) # Create duration array duration = xr.DataArray( np.array([3, 5, 2, 7, 4]), dims=('event'), coords={'event': np.arange(5)} ) # Select first period using xarray function first_period_xr = ds.select_first_period_xr(da, duration, days=3) # Plot results for one location first_period_xr.sel(location='A').plot.line(x='time') plt.title('First 3 Days of Events at Location A') plt.grid(True) plt.show() Network Analysis -------------- dominosee can generate and analyze networks from event data: .. code-block:: python # Generate a sample network from event data # This is a simplified example network = ds.generate_network(da, threshold=0.5) # Analyze network properties centrality = ds.calculate_centrality(network) # Visualize the network ds.plot_network(network, centrality) Next Steps ---------- To dive deeper into dominosee: - Explore the :doc:`user_guide/index` for detailed explanations - Check out the :doc:`examples/index` for practical examples - Refer to the :doc:`api/index` for complete function documentation